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1 Introduction

Since few years ago, modelling a complex system which involves a lot of similar
subjects such a cellular tissue, a set of human relationships, a bugs hierarchy
or a computer network meant to work with a completely random network, that
had to describe all the structure links between those subjects.

After the studies of scientists like Albert Laszlo Barabasi however, the entire
scene of networks simulation changed definitively discovering that almost all
complex systems aren’t based on random or pseudo-random networks but on a
particular kind of structures : Scale-Free networks (SFN).

In a SFN the nodes are not uniformly distributed over the space, instead
they are gathered around those other nodes which already have a certain number
of connections. These networks seem to represent the entire set of environment
structures related to complex systems; by now in fact it is discover that, for
example, the following systems are based on scale-free networks:

e Cellular metabolism
e Sexual relationships

Research collaborations

Protein networks

Hollywood actors
e The world wide web

The above experimental information makes possible to suppose that scale-free
networks are everywhere around us, from our daily relationships to the distri-
bution of the mass in the universe. So a great deal of scientific interests are
originated from these studies, specially those regarding the simulation of cited
phenomena.

My idea was to develop an open, interactive and object-oriented framework
which works on top of Artis (http://www.jpolis.com/gda/index.html) and
that permits the distributed simulation of a scale-free network through a simple
and transparent interface.

The project name is SCAR (SCale-free ARchitecture) and provides not only
a simulation interface, extendable classes, static and dynamic network manip-
ulation, but also a 3D scale-free network visualizer that may help the system
modeler to describe the simulation environment in a interactive way.

This middleware is entirely written in C++ and it uses the Chandy-Misra-
Bryant algorithm provided by ARTIS to implement network synchronization,
messages delivery and all the other simulation events.



2 Design

2.1 Simulation flow

SCAR is aimed to be as easy to use as possible, with a minimal amount of
user-visible objects and methods to call; from the application point of view, in
fact, only two objects are involved: the simulation core Scar (see section 3.4 on
page ??) and the virtual class Node.

The first step for a user is to define a class extending Node to specify the

behavior of a single item through the Live() and React() methods implemen-
tation; together those two functions can completely describe the essence of a
node: the first corresponds to its internal life (state update) and the second to
its reaction to external events.
A user however is not always forced to build a node structure from scratch (fol-
lowing only the Node interface) but can be aided by the TemplateNode class, an
extension of the node interface which adds a lot of useful features to the basic
implementation and which will be discussed further on this document.

After these operations a Scar object must be instantiated supplying some
scale-free network parameters (the node distribution generator and the number
of connections per node), then a user is encourage to follow the standard usage
procedure, or rather give a certain number of its nodes to the middleware and,
at the end, start the simulation calling the StartSimulation() method.

At this step the creation of the network begins: each local processor adds
one by one its nodes to the scale-free structure (Laszlo) generating synchroniza-
tion events, so when all the LPs have completed this operation, then the real
simulation starts with a global state update of all nodes.

From here everything will be event-driven.



2.2 Objects relationships

Figure 1: SCAR’s objects

Beyond, the diagram shows the SCAR design and its information flow rep-
resenting objects relationships: after the application has passed its nodes to the
framework, as displayed by the creation loop A, the computation starts follow-
ing the simulation loop B, at the end therefore the information flow returns to
the application following the output loop C (for reporting and visualization).

Polygons edges represent the dynamic visibility of SCAR objects, exagons
with adjacent edges can directly communicate between them.

The expressive power of the middleware in correspondence to the simulation
model is encapsulated inside the nodes, it depends only from the behavior of
these deployed items, from their reaction to external events and from their
internal state update.

At the end of simulation the user gets back all its nodes passed through the
simulation flow and the entire scale-free network structure available (from Scar)
for reports and, if needed, for a 3D visualization using ScarViewer.



3 Framework structure

3.1 Middleware candies : nodes

From the modeler point of view the definition of network nodes is a critical
point, after defined the environment of the model through the scale-free network
parameters in fact the validation of the entire system depends only from the

nodes behavior definition.

Just for this reason SCAR wants to provide to the modeler an as flexible and
simple as possible node-subsystem, providing the following interface that will be

discussed further:

Node

#mylD: int
#myLP: int
#numConn:
#time: Time

#neighs: list<Node*>

int

+Node()

+AddConnection(n:Node*): void
+isNeighbour(n:Node*): bool
+PrintStatistics(): void
+Live(): void

+Print(): void

+React(tm:

Time,srcid:int,srclp:int, msg:byte*,size:int): void

<<fake methods implementation>>

EmptyNode

+Live(): void
+Print(): void

+React(tm:Time,srcid:int,srclp:int, msg:byte*,size:int): void

TemplateNode

#ScheduleMessage(id:int,Ip:int,tm:Time,msg:byte*,size:int,): void
#ScheduleUpdate(): void
#InsertNode(node:Node*,conns:int=-1,gen:RandomGenerator*=0): voil
#Mitosis(): void

ApplicationNode

+Live(): void

+Print(): void

+React(tm:Time,srcid:int,srclp:int, msg:byte*,size:int): void
+...0

Figure 2: Node interface [ UML diagram |



3.1.1 The Node class

The Node class is the skeleton of a scale-free node, it implements only those
methods which describe its internal structure, like node links and the other
information directly related to the SCAR framework (the local processor where
the node resides and its identifier).

The basic idea is to leave unimplemented all those methods which define a
specific behavior, so the SCAR framework constricts the application to extend
this class implementing also its virtual methods.

At framework level every item managed is a Node object so only methods
hereafter can be called from within SCAR which cannot understands anything
about the node behavior.

The Node class therefore contains information for scale-free management pur-
pose only, in particular the following are the main features:

e virtual Live() :

Defines the internal state update function that represents the
spontaneous node life. This method is called whenever an Up-
dateState event occurs and, by default, one time at the begin-
ning of simulation.

e virtual React() :

Defines reactions to external stimuli, this type of message can
only be created from one of the other nodes of the network after
an internal state update or another message reaction. SCAR
never generates messages or any other type of event that may
be directly delivered to nodes.

e virtual Print() :

Applications are also forced to implement a simulation report
method in order to maintain the strict reporting policy adopted
by the framework. This method permits also a middleware-level
reporting , useful for debugging purpose.

e AddConnection() :

Adds a connection between this node and the one passed, creat-
ing a double side link. The supplied node is added to the local
connections list and vice versa.

10



And the following are the (protected) fields inherited from extending classes:
o myid :
The node identifier.
o mylp :
Local LP number.
o numConn :

Number of connections initially created for this node. This num-
ber doesn’t refer to the actual number of links, but to the num-
ber of connections created when the node was inserted inside
the network.

e time :

The global time pointer. Each time a node is added to the SCAR
framework it receives the current pointer to the simulation time,
this field will be used for scheduling purposes.

e neighs :

The list of node neighbors pointers. The entire information re-
garding the scale-free network shape and properties is managed
through this list.

In brief Node is a virtual class that constricts a user to extend itself and to
define its virtual methods (Live(), React() and Print()). After have discussed
about the Node class, a user can think this interface for node definition is a bit
simplified and reduced for a typical system modelling, however another useful
structure is provided by the SCAR framework just to resolve this problem: the
TemplateNode class, discussed in the next section.

11



3.1.2 The TemplateNode class

The TemplateNode class is a structure provided by the framework in order to
simplify the modeler approach to the node definition. It extends the node class
leaving unimplemented the methods that strictly define the node behavior (the
previous discussed Live(), React() and Print()), but adding some of new useful
features usable from within a node during the stimulation.

So much interesting are methods for dynamic network modification, a node
in fact can schedule not only a message or an update, but also a new node
insertion, or can clone itself (all its internal state but connections) adding this
clone to the network.

The features provided by the TemplateNode class are the following:

o ScheduleMessage() :

Schedules an event by passing the recipient ID, LP number,
scheduling time, a buffer with message and its size in bytes.
SCAR will generate a message event and will delivery it cor-
rectly.

o ScheduleUpdate() :

Schedules an internal auto-update state in order to produce a
new call to the Live() method at Current + Passed time. This
method is by default called one time at the beginning to start
up the event-driven simulation.

e Mitosis() :

Generates a clone node and add it to the neighbors creating a
bidirectional link, then schedules a synchronization event. This
operation involves only internal state and configuration there-
fore connections to other nodes are not copied.

e InsertNode() :

Inserts a new node inside the network, following the standard
scale-free insertion policy. Obviously, generates also the syn-
chronization event.

Examining the previous UML diagram however, we can view that if SCAR man-
ages all its node with Node objects become possible for application to bypass the
TemplateNode class and provide to the framework only Node-derived objects;
this kind of usage is permitted but thoughtless because it reduces the expressive
power of the simulation. Some of its obscure aspects are discussed below in the
EmptyNode section.

Therefore declaring a TemplateNode subclass an application can create any
kind on node that may represent a computer, a protein, a cell or even a person.

12



3.1.3 The EmptyNode class

Every local processor has to maintain the entire view over the scale-free net-
work, this is necessary for node insertion and even more for messages delivery,
an LP in fact is responsible on the node-to-node message delivery so when a
MsgFvent occurs it has to discover if the destination node is inside the local
network or outside it. To perform its job a Scar object (further discussed in the
section 3.4) maintains some information about all nodes inside the network in
the following way. Local nodes are present inside the structure in their original
representation supplied by the user, the non-local ones instead are represented
only by their fake implementation, used to retrieve the node ID and, very im-
portant, the local processor. At this point we have explained that inside each
local processor there is a complete image of the network, however a considerable
part of nodes are used only to maintain their absolutely necessary fields.

To keep the framework as light as possible then we have to reduce the size of
those fake nodes using the simplest extension of a Node interface: the Emp-
tyNode class that simply inherits its father resources and implements virtual
methods as do-nothing functions.

Returning to the problem discussed in the previous chapter about a possible
non standard usage of the framework we can now understand our trade-off:

- We have to define an interface for nodes manipulation to which SCAR
refers, this interface have to be as light as possible because it is the mini-
mum size of a single node.

*BUT *

- We have to provide a powerful and flexible template class that helps a
modeler on working with this framework.

I prefer to consider at first the framework performance, so the services provided
to the user have been reduced as much as possible (in order to maintain light
a single node) while node functionalities have been shifted down to the Tem-
plateNode class becoming an optional choice. Note that those features remain
however highly recommended and have to be considered as the standard way of
use.
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3.2 RandomGenerator interface

The shape and the properties of a scale-free network are defined by its own
links, now some words must be spent explaining the importance of the network
distribution function.

Inserting a node into a SFN involves a stochastic choice between all the already
present nodes, this aleatory number X has a specific probability distribution
decided by the network creator. Usually scale-free networks are built using an
exponential distribution function while, for example, classical random networks
are generated using a uniform one.

To maintain a maximum degree of flexibility SCAR uses suitable objects
called generators that must be supplied during the node creation and that are
customizable by the user simply implementing their interface: the RandomGen-
erator.

By default our framework provide three built-in generators :

e Exponential generator f(z)=Xe™™®
L (a<z<D)
Unif t T) =4 b-e :
e Uniform generator f(z) { otherwise
.’1)2
e Gaussian generator flz) = \/2;76_20_2
e Poisson generator P(X=1i)= ’Z\.Tief)‘

The Poisson generator however, must be handled with care, the Poisson den-
sity function codomain in fact is different from zero only between about -5 and
15 then usable values swing within the range ( 0, 15 ].

So, getting numbers in the range from 0 to the number of nodes mean stretch
the output of the Poisson CDF inversion procedure creating a lot of numeric
holes.

These holes are filled with a raw linear interpolation and partially compensated
by the entropy introduced with network sorting (see appendix B for a further
discussion).

Into these objects SCAR uses the standard random() function as random source.
Initialization of system random structure with a seed is done by Laszlo once
when instantiated, so it is not necessary to call a srandom(seed) inside a Ran-
domGenerator object.

In particular a user must remember that at every simulation run the frame-
work execute the following piece of code:

14



double seeds[20] = { 606112567, 2005261598, 975679233, 381883932, 1949009736,
457621696, 31040274, 2084138466, 63789657, 521636194,
670018843, 1263912019, 2072256297, 1025373591, 1693757298,
1115383532, 44685244, 1568381214, 2014569565, 1052870108 };

srandom((unsigned int)seeds[mylp % sizeof(seeds)]);

As we can see, a previous seed manipulation is always useless.
Most demanding users can also specify a different generator at every node
insertion, so any kind of hybrid network is permitted and then...simulable.

15



3.3 The scale-free master of puppets: Laszlo

A Laszlo object describes the structure of the scale-free network containing all
the nodes objects and providing all the necessary management features such as
automatic node insertion and networks merging. Both Scar and ScarViewer
(section 3.4 and 4) refer to nodes through this object.

The main features offered by the Laszlo class are:

e SetConnXnode() :

Set the number of initial connections per node. This number
refers to how many links are generated when a node is added
to the network. This is a global (default) value that can be
overridden when calling an AddNode().

e AddNode() :

Insert a new node into the network and generate its links follow-
ing the specified probability distribution (or the default one).
At any node insertion the entire network is reordered using a
O(n log(n)) algorithm, so this is the computational cost of this
operation.

e SetNode() :

Attach an already linked node to the network; in this case sim-
ply update the related links and reorder the network (used for
synchronization purpose).

e GetNode() :

Return, if present, the node structure with the specified ID and
LP.

o Merge() :

Merge this scale-free network with another, build all links cor-
rectly and reorder the network.

e DeliverMessage() :

Deliver a message to a specific node inside the network, nothing
happens if a delivery is requested for a non local node (fake).

e UpdateNode() :

Update the internal state of a node calling its vital function,

nothing happens if a update is requested for a non local node
(fake).

o UpdateAll() :

Update the internal state of all nodes calling their vital func-
tions, only real nodes are updated.

16



Into this object the network is simply represented as an ordered list of Node
structures linked between them.

During the simulation time inside a scale-free network of a single LP are present
simultaneously two kinds of nodes: those which has been inserted by the appli-
cation (we will call them local nodes) and all the other ones which have been
generated by the others LPs and are came out from a synchronization event; all
these non-local nodes are present inside Laszlo in their fake implementation in
order to maintain a global view of the entire network (needed by the scale-free
structure itself) reducing as much as possible those unnecessary information re-
lated to the fake nodes.

Note that these non-local nodes therefore are only an image of their true imple-
mentation, so the simulator knows which local processor they refers and nothing
else.

Each non-local node is represented with a previous discussed EmptyNode ob-
ject: the minimum-size structure that permits all middleware-level operations.
However, notwithstanding its flexibility, Laszlo cannot be considered as a total
secure black box object because only the application knows how to manipulate
correctly the nodes contained within, so there are some cases where becomes
necessary to bring out the node list for a direct manipulation.

17



3.4 The simulation core : Scar

The simulation core is represented by the Scar object that is responsible on
scale-free network management and on events scheduling through ARTIS calls.
When instantiated Scar initialize a new scale-free network (Laszlo) based on the
parameters supplied by the user (the RandomGenerator object and the number
of connections per node), then the application has to provide a certain number
of nodes (at least one, extended from Node or, *better* from TemplateNode
class) and start the simulation, specifying how much time has to be simulated.
After this procedure Scar starts its loop fetching new events from below; at
the beginning it usually has to be handleed all the new-node-insertion events
and their related synchronization messages, then, when all the LPs have created
their networks and everything is synchronized, the simulation can be started.
At this point must be give the initial stimulus calling an update of the internal
state of each node (Laszlo:: UpdateAll()) which cause the event-driven process
to start. Possible simulation events on SCAR are the following:

e NewNode :

A new node has to be inserted into the network, this event
can be generated only by the local application because concrete
nodes can be inserted only into the local networks, for remote
insertion a NodeSync event must be used.

When this kind of event occurs a Node object has been de-
queued from the new-node structure and inserted into the net-
work through Laszlo.

If the new-node queue is empty, an error is thrown.

e NodeSync :

A node was inserted somewhere into a remote network, so a syn-
chronization is required. A synchronization event provides the
new node identifier, its local processor and a list of its neighbors
IDs.

No other piece of information is needed: the local processor sim-
ply create a new EmptyNode structure and add it to the network
using the SetNode() method.

e Created :

All initial nodes of a local processor has been added, so the
specified LP is ready for simulation.

To avoide simulation errors each local processor, after that all
the nodes have been added, waits until all the other LPs have
been initialized, then starts the simulation.

e NodeMsg :

A message has been generated from a remote node, it has to be
delivered somewhere into the local network, so this message is
took and passed to a DeliverMessage call.

18



e Update :

Internal state update requested. Call a Laszlo’s UpdateNode()
method passing the identifiers provided by this event.

e EndSim :

End of simulation: stop to handle events, begin the report-
ing/visualization procedure.

At the end of simulation the scale-free network inside Laszlo can be retrieved
in order to visualize it through the 3D visualizer (discussed in the section 4) or
simply for reporting and analysis. At this point we can summarize the run-time
structure of a simulation as follows:

1. Define a single node structure and its behavior
Decide in which kind of network those nodes live
Add an initial number of defined nodes

Start the simulation

BRI S

Retrieve simulation reports and, if needed, the entire scale-free network
for 3D visualization

The SCAR project was developed with extensibility in mind, every piece of
code can be overridden, every object extended, so new functionalities that a
modeler can need are extremely simply to implement.

19



4 A 3D OpenGL visualizer : ScarViewer

4.1 A brief overview

ScarViewer was developed to provide a flexible and interactive network visuali-
sation toolkit besides those analytical report methanisms like simulation tracing
and the others dynamic data collections.

This visualiser permits the studying of nodes distribution over the network:
it displays the scale-free using a non-deterministic algorithm which tries to
spread the nodes in a as representative as possible way.

Given a Laszlo object in input ScarViewer can visualise the entire network
with the following features:

o Visualisation of nodes distribution over LPs through different colours
e Interactive arcball-stype network manipulation and view

e Runtime change of the scale-free hubs gathering

e Runtime change of nodes density over the space

e Auto-adaptive density/gathering configuration

o Printing of some kind of text on window

e Possibility of make screenshots

e Link-only or sphere-node visualisation

e Rebuilding network optimization

This tool was developed to be very simple to use, every aspect regarding the
used libraries (OpenGL and SDL) and I/O interaction is enclosed inside the
object in a totally opaque way.

This is obviously a trade-off with flexibility but suppose that everyone with
a minimal scientific knowledgement may need to use it, so the only actions
involved are instantiation and a display() call.

This part of the SCAR project is intended to develop a little graphic toolkit
that a user can extend, adding a lot of other functionalities like a dynamic
representation of simulation, or view of some parameters of its specific model
and implementation.
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5 Framework analysis

I have decided to spend a certain amount of time in framework analysis, trying
to verify its efficiency, its coherence and its behavior variating the number of
local processors, the number of nodes and their distribution.

Those studies have produced a lot of information, useful also for some deci-
sions that I have to be make during the simulation modelling.

These presented observations are made using an exponential distribution (an
as-scale-free-as-possible network).

5.1 Scale-Free property conservation

The first step is to verify if the scale-free distribution property is conserved in-
creasing the number of local processors.

These data represents a simulation run of an exponential distribution network
with a mean of 200.0. The following graphs visualizes the distribution of links
over the network, reported increasing the number of local processors:

Scale-Free distribution property conservation (5000 nodes, mean 500.0)
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Figure 3: Ezponential node distribution

As we can see all of these curves coincide, determinating a proof of goodness of
SCAR.

Using the framework we can suppose now to have the warranty on correct net-
work creation that will not depends on the number of local processors and then
on the parallelization of calculus.
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5.2 Efficiency of node distribution

Another structural analysis that may be interesting focuses on the percentage of
generated events that need a remote delivery (cause the target node isn’t inside
the current local processor).

Through this observation we want to verity if the framework structure can hold
inside the great part of nodes messages in order to use the scale-free property
to minimize the inter-LP traffic:

Node-miss percentage (10% mean, 10s simul ation)
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Figure 4: Node-miss rate (variable mean)

The above two graphs need a first step analysis:

1. The framework behavior is independent from network dimensions; this is
a good thing, it means that SCAR is quite scalable and we can suppose
there is no critical network dimension but the one imposed by hardware.

2. SCAR is also independent on the mean of network distribution, in the
first graph we have simulate a network with a variable mean value (10%
of total nodes) instead in the second one we have fixed its value to 200.0.
In both cases the efficiency doesn’t change.

So we can assume that SCAR is (network) shape-invariant and we can by now
consider it as a proof of goodness of our middleware; however thinks are not so
simple.
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Percentage of node miss (200.0 mean, 10s simulation)
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Figure 5: Node-miss rate (fized mean)

As the graph shows we have also some not so good results, the framework
seems to act like a random-network simulator instead of what we hoped:
with two LPs we have a about 50% of probability of delivery a message outside
the local processor, with four LPs this probability become 25%, with six 16%
and so on.
So we have expected to find lower probabilities of node-miss due to the structure
of a scale-free network but we didn’t keep in mind that by now the scale-free
network exists only inside our framework as a data-structure, and SCAR doesn’t
guarantee that the scale-free property regards also the LPs distribution. The
reason of these results therefore is that during the network creation SCAR
doesn’t have any preference about node links, it chooses connections only using
the distribution function and it doesn’t care about the node LP placement.
This behavior can give a warranty on a correct network creation but introduce
a trade-off for performance:

- We have to create an as coherent as possible scale-free network respecting
the probability distribution provided by the user.

*BUT *
- We have to optimized the performance of the framework trying to dis-

tribute the nodes paying attention on parallel computation (we want to
gather all the nodes around an hub on a single local processor).
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By now I have decided to maintain the scale-free properties, without implement
any kind of preferential policy on links creation, however I'm examining some
ideas that may reduce this problem.
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5.3 Network creation performance

Now it’s time to talk about performance and then...let’s start with benchmarks.
A first interesting test regards the network creation, having defined a network
synchronization algorithm a careful analysis is in fact necessary.

The simulation benchmark that has to be done is aimed to measure the goodness
of the synchronization algorithm when varying the number of nodes and the
number of local processor.

This first graph represents the behavior of the algorithm varying the number of
nodes:

[[ Network creation time]]
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Figure 6: Network creation performance (nodes-time)

According to our previsions all curves have the same shape with the same
polynomial slope caused principally by the computational cost of the sort algo-
rithm, O(nlog(n)).

An entire network creation therefore has a computational cost of O(n%log(n)).
Increasing effectively performance, from this point of view, means to work only
on the sort algorithm that, by now, is implemented via the stable_sort() of STL.

Comparing curves between them we can also observe that we have a great
performance increase on passing from a single LP simulation to a dual processor
simulation, however increasing the number of local processors even more cause
a little but constant performance decay.

It must also be considered that increasing the number of LPs means to
generate an enormous amount of synchronization traffic which decrease the per-
formance so, by now, even though are possible a lot of optimizations, we can
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consider this a fairly good result.

This second graph contains the same data, but highlighting the trend of creation
performance varying the number of LPs:

[[ Network creation time]]

Chimera (Quad Intel Xeon MP CPU 1.50GHz, 1GB Ram)
Caos (Dual Intel Xeon CPU 2.80GHz, 3 GB Ram)

110 T T
500 nodes ———
100 2500 nodes ]
4500 nodes —
%0 6500 nodes ——— ]
80 8500 nodes
70
% 60 s
S \ /
[== S0 N /’/
40 -
30 R
20 R
10
ob———
1 2 3 4 5 6 7
Number of LPs

Figure 7: Network creation performance (LPs-time)

In this graph the considerable performance increase passing from one to two
local processors is more evident, then adding even more LPs to the simulation
we can note that performance are stable until 7/8 processors when the results

became quite bad.

This behavior is easy to explain, in fact we are simulating over two machines:
one dual processor and one quad processor; the total number of real parallel
tasks is six, so its expectable a performance decrease when the computation is

not so well distributed.

On the whole we can confirm a fairly good computational advantage on
parallel calculus also regarding the network creation.

26



5.4 Simulation performance

To make some real simulation benchmarks I have written a simple example of
framework usage which represents a model of epidemic, simulated over a network
of sexual human relationships.

The results are the following:

[[ Performance for 10 simulation units]]
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Figure 8: Simulation performance (nodes-time)
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Figure 9: Simulation performance (LPs-time)



Performance directly related to the simulation are not so different from those
regarding the network creation.
We can point out a considerable increase of performance passing from one to
two LPs, then observe a little but constant decreasing.

So the same conclusion of above can be made examining the bad results with
7/8 local processor.
Results are the same as for creation: performance increases polynomially re-
lated to the number of nodes increment and also passing from one to two local
processors (but decrease if we increasing LPs even more).
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6 Conclusions

Even if a lot of work have to be done, I'm sactisfied of the actual results; it is
proved that the correctness and coherence of the framework is fairly good, how-
ever expected performance increasing over two local processors was not happen.
So the next work have to be focused mainly on performance increasing adding
some creational policies in order to reduce the node-miss rate.
Possible other framework extensions regards provided probability distributions
(random generators) and a dynamic visualization of simulated models.
Actually the SCAR framework have to be considered still in development,
even if a lot of tests and benchmarks are made in fact, it probably contains bugs
related to some not so used feature.
I hope that the work I have done may be useful for simulation purpouse in
order to continue on its development and bugfix.
Concluding, I would thank to Prof. Lorenzo Donatiello and Prof. Luciano
Bonini for the Simulation course and Prof. Gabriele D’Angelo for support and
advice.
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A Appendix A : discrete graphs

Data displayed with spline approximation in the previous chapters are presented
here as discrete lines-points graphs for examination porpouse.

All my benchmarks and reports are generated from simulation runs over the
PADS cluster available at the department of computer science and that includes
the following machines running GNU/Linux 2.6:

e Cerbero : Dual Intel Xeon CPU 2.80GHz, HT, 1 GB Ram

e Chimera : Quad Intel XEON MP CPU 1.50GHz, HT, 1 GB Ram
e Caos : Dual Intel Xeon CPU 2.80GHz, 3 GB Ram

e Cassandra : Dual Intel Xeon CPU 2.80GHz, 3 GB Ram

A.1 Scale-Free property conservation

Scale-Free distribution property conservation (5000 nodes, mean 500.0)
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Figure 10: Discrete node distribution
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A.2 Efficency of node distribution

Node-miss percentage (10% mean, 10s simulation)
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Figure 11: Discrete node-miss rate (variable mean)
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Figure 12: Discrete node-miss rate (fized mean)



A.3 Network creation performance
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Figure 13: Discrete creation performance (nodes-time)
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Figure 14: Discrete creation performance (LPs-time)



A.4 Simulation performance
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Figure 15: Discrete simulation performance (nodes-time)

[[ Performance for 10 simulation units]]

Chimera (Quad Intel Xeon MP CPU 1.50GHz, 1 GB Ram)
Caos (Dual Intel Xeon CPU 2.80GHz, 3 GB Ram)

500 nodes —+—
2500 nodes
3500 nodes —+—
4500 nodes —=—
5500 nodes

3 4 5 6

Number of LPs
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B Appendix B : built-in generators

In this appendix I have reported some benchmarks regarding the random gen-
erators goodness. For each one of them I have produced 1,000,000 of numbers
within some notable ranges and with various means and I have reported the
significative ones.

B.1 Exponential generator

The exponential distribution is produced with the inverse transformation method,
in fact supposing to have the following distribution function:

_ [ 1—eF ifz>0
Fz) = { 0 otherwise

it’s easy, to find its inverse (let v = F(x)):
F=1(u) = -8 In(1 —u)

this permits to transform a uniform generator into an exponential one.
The following are the made benchmarks that confirm the correctness of the
generator:

Exponential generator test with 1,000,000 of numbers
range=[ 0, 100] mean=5.0
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Figure 17: Ezponential distribution density
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B.2 Uniform generator

In this case I have simply adapted the system generator using a modulo(n)
operation:

Uniform generator test with 1,000,000 of numbers
range[ 0, 100] mean=5.0
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Figure 18: Uniform distribution density
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B.3 Gaussian generator

In order to produce an as correct as possible normal (Gauss) distribution I have

used the polar form of the Boz-Mueller algorithm.

This method suppose to get two numbers z and y out from a uniform generator
in the range [ -1, 1], then compute the value R = 2 +y? and if R = 0 or
R > 1 throw them away and try another pair (z, y) else generate the following

Gauss-distributed values:

20 = T/ =2 In(R) IIQ(R)

—2 In(R)
R

21 =Y

Here’s some benchmarks results;
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range[ 0,50] mean=5.0
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Figure 19: Gaussian distribution density
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B.4 Poisson generator

A Poisson distribution generator is obtained through a boor algorithm using
a graphical way. The main problem for the Poisson distribution is that it is a
discrete distribution with usable positive values in the range [ 0, 10 ], so we have
generated all the distribution function values at first, then we have stretched
them as needed and used a raw linear interpolation to fill the numeric holes.
At this point we have use an inverse numeric method to retrieve the Poisson
distributed number starting from the uniform one.

This way to proceed is so much slow and boor, it’s also numerically unstable
and, as we can see in the following graphs has a lot of problems with ranges
great then its native ones ([ 0, 10]). For these reasons the Poisson generator
provided by SCAR may considered a didactic experiment and its usage is highly
thoughtless. The following is the Poisson generator behavior in the range [ 0,
10 J:

Poisson generator test with 1,000,000 of numbers
range[ 0, 10] mean=5.0
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Figure 20: Poisson distribution density with native range [ 0, 10 ]
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But increasing the range generates a lot of bad results:

Poisson generator test with 1,000,000 of numbers
range[ 0, 100] mean=5.0
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Figure 21: Poisson distribution density with range [ 0, 100 ]

...even though, with some immagination, it still seems a Poisson density:

Poisson generator test with 1,000,000 of numbers
range[ 0, 100] mean=5.0
CORRECTED
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Figure 22: Poisson distribution density with a raw numeric errors correction



C Appendix C : some ScarViewer screenshots

C.1 An exponential distribution network
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Figure 23: Ezponential network

C.2 A uniform distribution network
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Figure 24: Uniform network



C.3 A Poisson distribution network
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Figure 25: Poisson network

C.4 A gaussian distribution network
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Figure 26: Gaussian network
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