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Radiative transfer in Astrophysics

Radiative transfer in astrophysics refers to the phenomena of
energy transfer in the form of electromagnetic radiation
between astrophysical objects.

Interstellar medium:
gas and/or dust
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RT: main applications

"= Interpret high-resolution images produced by modern
telescopes

= Understand the thermodinamical phenomena involved in
an astrophysical system

= Study the physical structure of celestial bodies




Why Monte Carlo methods for RT

= Simple underlying idea
" Permit to simulate complex and inhomogeneous systems

= Under certain assumptions they are as accurate as their
analytical counterparts

= Well known and widely used

= They particularly fit to the structure of the problem of RT




Monte Carlo RT: basics

" Photons are generated isotropically from a point source (a
star)

= They travel across a defined interstellar medium (dust or
gas)

= Along their path two main phenomena may happen due to
their interaction with the matter:

= scattering: the trajectory of the photon is deviated
= absorption: the photon is absorbed by the medium

" The photons that exit the medium are projected into the
observer's frame, producing images




RT theory: basics
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The plane parallel semi-infinite slab
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The slab: MC algorithm

for a number of photons N {
generate a new photon from the source
do {
sample the interaction length L using: L:_ln(g)
while photon is inside the slab { na
if X[0,1] < albedo
scatter

else
absorb
compute thermodynamical measures
}
If photon exited the slab {
project it into the observer's plane




|Isotropic scattering

The new direction of travel is picked uniformly from any
possible direction

= Advantage: the analytical solution for this problem is
known (Chandrasekhar 1960) and can be used for
validation

= Disadvantage: it is a not enough accurate approximation
for realistic gas or dust scattering




Isotropic scattering: validation
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|Isotropic scattering: moments
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|sotropic scattering: results

Intensity against albedo
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|Isotropic scattering: results

Total intensity against albedo Total intensity against optical depth
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Anisotropic scattering

Interstellar medium: gas and dust

We want to simulate dust scattering (ex Nebulae and
some cases of accretion disk)

Anisotropic scattering using Rayleigh + Henyey-
Greenstein function

The scattering depends on the incident angle and on
several other parameters

Photons polarization is also modeled

Simulation of dust or gas properties for different
wavelengths is possible




Anisotropic scattering: validation

Additional anisotropic scattering parameters:
* g: scattering asymmetry parameter (0 = isotropic, 1 = forward-throwing)
* pl: peak linear polarization

We validated Anisotropic scattering using g=0
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Anisotropic scattering: results

Ultraviolet band U (A=0.34um)  Infrared band K (A=2.20um)
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3D grid with dust scattering

We build a 3D Cartesian grid to simulate inhomogeneous
media

Each point of the grid is associated to a a value of density
P and opacity K

For every photon we have to compute the optical depth
depending on the instant position and direction using:

r=[ nodl

We can simulate totally arbitrary conditions
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* Grid: 1.0x1.0x1.0 discretized
to 200x200x200 points

* Dust cube: 10x10x10 grid
points at position -7,7,100




3D grid: a dust spheroid

Opacity distribution Intensity Intensity (logarithmic scale)
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Parallelization using MPI

= We parallelize the simulation by decomposing the number of
generated photons among the CPUs

= At the final step all the values are merged to the root
processor

= High-efficiency and low communication overhead obtained

= Eventually for very big grids a spatial domain decomposition
IS also possible (in case of memory limits)




Parallelization: speedup

Results obtained using the DAS 3 cluster
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Conclusions

* RT Is a very complex process with several underlying
aspects

= We studied and understood a considerable part of the
theoretical background

= We implemented a MC simulation for dust RT

= We validated it for the plane parallel slab scenario, we did
experiments and measurements on it

" We implemented a 3D grid for inhomogeneous media on
which we also experimented

= We parallelized the simulation code using MPI




