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Abstract

Monte Carlo methods for radiative transfer are nowa-
days well known and widely used in both Astronomy and
Physics. The idea behind those techniques is very simple:
simulate the trajectory of a large number of photons keep-
ing track of their interaction with the underlying interstellar
medium. For a sufficient number of simulated particles such
methods have proved to be as accurate as their analytical
counterpart. However Monte Carlo simulations allow us to
model systems with an arbitrary distribution of the interact-
ing material (e.g. dust or gas).

To understand the meaning of the detailed images pro-
duced by modern telescopes, the finest models for radiation
transfer become necessary and Monte Carlo methods are a
suitable candidate for this task. We have investigated the
phenomenon of radiation transfer on dusty stellar systems
using Monte Carlo methods. We will discuss several as-
pects of radiative transfer and we will show the results we
obtained. Furthermore we will present a parallelization ap-
proach. The simulation is entirely implemented in C++ and
uses MPI.

1 Introduction

The concept of Monte Carlo radiation transfer is ex-
tremely easy: we generate a new photon from a defined light
source (a star) and we let it travel for a certain length, until
it interacts with the interstellar medium (gas or dust).

The system consists of a star producing photons isotrop-
ically and a certain amount of dust and/or gas between the
observer and the light source that influence the trajectories
of the emitted photons.

Once the photon is generated, two important phenomena
may happen along the its path:

e Scattering

The trajectory of the particle is deviated
according to a certain probability distribu-
tion and depending on the type of scattering
(electron scattering, dust scattering, ...) and
many other factors.

e Absorption

The photon is absorbed by the matter, the
journey is over.

Finally, by projecting all the surviving photons onto the ob-
server’s plane, it is possible to generate images.

1.1 History

Monte Carlo methods are known from the beginning of
the 20th century, when they were generically called statis-
tical sampling. The name Monte Carlo refers to their ran-
domness and repetitiveness, characteristics in common with
the famous casino of Monaco.

Such a fancy name became popular thanks to famous
physicists like Stanislaw Ulam, Enrico Fermi, John von
Neumann and Nicholas Metropolis. The story narrates that
Ulam’s uncle, a well-known hardcore gambler, would con-
stantly borrow money from friends and relatives because
he “just had to go to Monte Carlo”. From there the name
Monte Carlo methods proposed by Ulam[5].

Probably the most famous early use of Monte Carlo tech-
niques was by Enrico Fermi during his studies in Rome on
the moderation of the neutron. There he was performing
Monte Carlo calculations using mainly a small mechanical
adding machine. Afterward, while working in the ENIAC
operation in Los Alamos, Fermi persuaded his friend and
collaborator Percy King to build an improved and ingenious
version of his old adding machine. Such instrument was
called FERMIAC or Monte Carlo trolley (Figure 1) and it
was used to determine neutrons collision paths in numerous
nuclear systems[5].

Thereafter, Monte Carlo methods played (unfortunately)
a central role in the Manhattan project and in the successive
atomic bombs experiments, when they started to become
more and more famous in other fields of science and in busi-
ness. Monte Carlo techniques have been also important for
the development of better and more efficient random num-
ber generators. They led to the creation of the linear con-
gruential generators, a necessary alternative to the random
number tables used until the *50s.



Figure 1. The FERMIAC

2 Radiation transfer: theoretical back-

ground

Here we will introduce some basic concepts of radiative
transfer, just necessary to understand the processes we are
modeling.

2.1 Basic concepts

Considering a unit surface d A at an angle 6 to its normal,
within a solid angle d and a frequency range dv in a time
interval dt, the intensity [, is defined with respect to the
radiant energy dF, as:

dE,
I = cosf dA dt dv dS2 M)

It is measured in [ergs cm =2 s~! Hz~! sr~1] and denotes
the radiation energy (within a certain frequency) crossing
a certain area with a certain direction per second. Another
important term, the flux F),, is the energy that crosses an
area d A per unit of time:

F, = /I,,cos&dﬂ 2)

measured in [ergs em ™2 s71 Hz71).

Those two terms play a central role in the process of ra-
diation transfer.

Furthermore, being the cross section ¢ the likelihood
of interaction between the photons and the particles in the
medium, the energy removed per second per frequency per
solid angle from the direction of travel (by either scattering
or absorption) is:

E.=1,0 3)

Considering then the cross section and the density n of the
material, the differential intensity along a length dl is:

dlv=—I,nodl “4)

the solution of this differential equation is easily derived as:
I,(1) = 1,(0) e~ 5)

Concluding, with p the mass density of scatterers and ab-
sorbers and « the opacity of the medium, the following re-
lation stands:
noc=pk (6)

Where ﬁ is the average distance that the photon travels
between interactions.

We will now study the generation and propagation of the
photons throughout the interstellar medium.

2.2 Photon generation and propagation

Having a source Sy in (zo, o, 20) wWe generate Ny pho-
tons -y with initial position vo = (xo, Yo, 20), zenith angle
0o(—%, %) and azimuth angle ¢o(0, 2) (we generate only
forward-going photons, that are the ones we are interested
in). Supposing L the maximum depth of the dusty medium
we discretize such length into N steps of size dl.

At each step the probability for a photon to interact along
the distance d! is:

P,=nodl 7
Therefore for N steps and dl = L/N the probability to
travel without any interaction yields to the exponential se-
ries:
L N —noL —T
P(L):(lfnoﬁ) =e =e (8)
Which is just the pdf of L and where 7 is the optical depth
along a distance L (number of photons mean free paths
along such distance) and it is equal to:

L
T:/ n o dl 9
0

The optical depth T is an important factor in radiative
transfer. It is a measure of total transparency and it is ana-
Iytically convenient because it unifies the main characteris-
tics of an homogeneous semi-infinite object (depth, density
and opacity).

2.3 Scattering and absorption

Once the photon has traveled a distance L, if it is still
located inside the interacting dust cloud, either scattering
or absorption will occur. The probability that whether the
first or the second phenomenon will happen depends on the
albedo of the medium. The albedo a is simply defined as
the probability for a photon to scatter with respect to the
total probability (of scatter and be absorbed):

a=—"9% (10)
Ng Os + Ng Og
By setting a = 1 we have total scattering while by setting
a = 0 we have total absorption.



2.4 Mean Intensity, Flux and Radiation Pressure

The mean Intensity J, the mean Flux H and the mean Ra-
diation Pressure K are very important astrophysical mea-
sures. They are also called intensity moments and they
are used to measure the thermodynamical and mechanical
forces acting throughout the dusty medium. They are de-
fined as:

1
1
H = E/Icos(@)d(l (12)
_ 1 2
K = E/Icos(ﬁ) dQ (13)

We have well known theoretical solutions for those
values, hence they represent a strong validation measure
for the model we have implemented and we therefore will
use it to prove it.

See [1] and [2] for more details on radiative transfer
theory.

3 The plane parallel slab
3.1 Scenario

We now model the simple case where between the source
and the observer there is a plane parallel, uniform, homoge-
neous and semi-infinite slab of dust. The scenario is de-
picted in Figure 2.
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Figure 2. Plane parallel slab

In this case, the probability for a photon to interact be-
fore reaching the slab is zero, hence we neglect the empty
space between the light source and the slab and we generate
photons isotropically directly from the source-side surface
border of the slab.

For sake of simplicity we will assume the slab to have al-
ways depth of 1.0 and different configurations of maximum
optical depth 7,,,,, (so different configuration of p and k).

The density p and the opacity x are considered to be
homogeneous across the space, we can therefore sample
the length that a photon travels from (8) with the inversion
method of (14).

l= —@ (14)
no
With £ our uniform random number generator in (0, 1).
Simplifying, we can parametrize the slab by its total vertical
optical depth 7,40 = N 02Zmar (With 2,4, the total the
depth of the slab). We would then sample the optical depth
T as:

T = —In(§) (15)
And we would normalize it to 7,4, obtaining [ with:
| = TEmer (16)
Tmax

3.2 Isotropic scattering

The simplest scattering technique is the isotropic scatter-
ing. It consists of having a uniform probability distribution
of the scattering angles 6 € (0,27) and ¢ € (0, 7).

This models an ideal case and it cannot represent real
dust scattering where, as we will see further, the scattering
is not isotropic and it depends on the incident angle of the
photon at the moment of the interaction.

3.2.1 Validation

Isotropic scattering is a simple approximation of the reality,
nevertheless it is well studied and analytical solutions for
some measures of the system are available from the litera-
ture.

The most important validation measure is the relation be-
tween the incident 6§ angle of the photons and the normal-
ized total intensity I. The results are shown in Figure 3
where the solid line corresponds to the analytical solution
(Chandrasekhar [2] 1960) and the points are the Monte
Carlo simulation (see [1], Figure 1a).

As we discussed previously, another strong validation
measure are the intensity moments J, H, K. In order to cal-
culate them for a plane parallel structure we divide the slab
into n parallel slices, orthogonal to the viewing plane. We
then compute the moments for each slice and we finally plot



Figure 3. Total intensity I for a plane slab with Tyqz =
10, @ = 1 against the exiting 6 angle

the J, H, K values across the slab using the discretized for-
mulae:

B, 1

J = — (17
4No 27: il
Bl/ Mg

H = (18)
4Ny ; | 4]
B, 12

K = L (19)
4Ny ZZ: | il

Where B, is the total flux and Ny is the total number of
photons we generate. The results are shown in Figure 4.
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Figure 4. Intensity moments for a plane slab with
Tmax = 107 a=1

The data we obtained are coherent with [1] (Figure 1b).
Once validating the model, we can perform several interest-
ing experiments and measures with it, as described in the
following section.

3.2.2 Results and measures

Using isotropic scattering we can conduct simple but inter-
esting experiments: we generate 10M photons from a point
source through a slab of maximum optical depth 7,4, =
10. Figures 5, 6 and 7 show the variation of the intensity
for different values of albedo (0.6, 0.8, 1.0).
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Figure 5. Intensity for 7y,q, = 10, 10M photons and
albedo of 0.6
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Figure 6. Intensity for 7q; = 10, 10M photons and
albedo of 0.8

The relation between the intensity and the albedo re-
sulted from the simulation is depicted in Figure 8. As it ap-
pears from pictures 5, 6, 7 and 8 the intensity that reach the
observer seems to increase exponentially with the albedo.

We suppose that is because along a path Lj with k av-
erage interactions, the probability to avoid absorption is
(1 — a*) and such polynomial term is increased by the sev-
eral other factors induced by the scattering process.
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Figure 7. Intensity for Tynq; = 10, 10M photons and
albedo of 1.0
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Figure 8. Total normalized intensity for Tmaz = 10.0,
1M photons, and variations of albedo (logarithmic scale in

Y)

From another perspective, linear variations of the
medium density p lead to linear variations of the optical
depth 7.

As we sample the non-interaction length L from — IZ%,
we expect L to decrease like p~!, decreasing in this way the
signal/noise ratio %

In particular we found a logarithmic relation between the
total intensity I that reaches the observer and the slab den-
sity p (so the optical depth 7). Such relation is expressed by
Figure 9.

The exiting photons, appropriately projected into the ob-
server’s frame are shown in Figures 10, 11, 12 for 10M pho-
tons and albedo 1.0.
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Figure 9. Intensity values with respect to variations of
Tmaz (1M photons, 1.0 albedo)
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Figure 10. Intensity for 74 = 1.0

Using a constant scale as in Figure 13 it is more clearly
what it would be visible of the stellar system by an even-
tual telescope if increasing the optical depth (a denser dust
layer).
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Figure 11. Intensity for 74, = 2.5
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Figure 12. Intensity for 74z = 5.0

3.3 Anisotropic scattering: dust

The 99% of the interstellar material is composed by gas,
mostly hydrogen, and the rest by dust. Nevertheless in some
cases dust plays an important role and modeling it becomes
of interest. An example are nebula or some types of ac-
cretion discs found in binary star systems or AGN (active
galactic nuclei).

The dust particles are usually irregular in shape and they
are composed by mostly silicates, carbon, ice and/or iron
compounds.

3.3.1 Theoretical background

Isotropic scattering with no polarization is not a good ap-
proximation for many problems. Using instead Rayleigh
scattering and the Henyey-Greenstein [4] phase function we
are able to approximate dust scattering.

Rayleigh scattering happens when the scattering parti-

Figure 13. Intensity for Tmex = 1.0,7max =
2.5, Tmaz = 5.0 respectively with constant scale

cles are smaller than the wavelength of the light cross-
ing them, for example in the Earth’s atmosphere (where
Rayleigh scattering causes the typical blue color of the sky).

For anisotropic scattering the new scattering angle is ob-
viously not uniformly distributed, but depends on the inci-
dent angle of the photon at the moment of the interaction
and on several others parameters. Moreover the anisotropic
scattering algorithm we are using keeps track of the polar-
ization state of each single photon in the system along its
path.

The polarization state of an electromagnetic wave de-
pends on the complex amplitudes E,, E, of the electric
field E along the two axis, orthogonal to the direction of
travel. To define the polarization state space of a photon
we use the Stokes’ parameters [3] (I, Q, U, V) computed
with respect to three vector bases: the standard Cartesian
basis (Z, 9), a 45 degrees rotated Cartesian basis (a, 5) and
a circular base (f ,7) as follows:

o IZ|EP +IE, P

o Q= Ipcos(2¢)cos(20) = |E,|? — |Ey|?
o U = Ipsin(2¢)cos(20) = |E,|? — | Ep|?
o V =1Ipsin(20) = |E|? — |E,|?

Where [ is the total intensity, Q and U are the linear polar-
izations relative to the standard basis and the rotated basis
respectively, V is the circular polarization. Note that the 26
and 2¢ terms model the fact that the polarization is invari-
ant for rotation of 180°. Figure 14 shows the geometrical
meaning of the Stokes’ parameters where (I,Q,U,V) =
(81,52, 55, 54), while examples of possible polarizations
are shown in Figure 15.

In our simulation the polarization state of each new
photon emitted from the source is initialized to (1,0, 0, 0)
which is the case where we have no initial polarization (in
absence of magnetic or electric fields). In other words the
likelihood of any polarization state at the photon source is
uniform.
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Figure 14. Poincare sphere representing the Stokes pa-

rameters
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Figure 15. Example of possible polarizations using
Stokes’ parameters

Each time a photon scatters its polarization changes and
so does its Stokes’ vector according to the following equa-
tion:

S" = L(r — is)RL(—i1)S (20)

Where the matrix R describes the scattering probability de-
pending on the incident angle of the photon and L is the
Mueller matrix that rotates towards the coordinates of the
observer. In absence of magnetic fields the scattering ma-
trix R is relatively simple:

PP 0 O
P, PP 0 0
0 0 P, —P
0 0 P P

R(O©)=a

While the Mueller matrix just rotates the system depending

on the observer’s frame:

1 0 0 1
_ 0 cos(2¢p) sin(2y) 0O

L) =al , —sin(2¢)  cos(2) 0
0 0 0 1

For dust scattering the matrix R must be filled in with the
following values:

Po= Ly 1en
T (14 g% 29 cos(©))3/2

B 1 — cos(0)?

P = b Pll—i-Ts(@)Q (22)
B 2c0s(0O)

Pso= By + cos(©)2 23)

_ 2
P o= —pop i O) (24)

"1+ cos(Oy)?
Where:

e g is the scattering asymmetry parameter (0 = isotropic
scattering, 1 = forward-throwing)

e p; is the peak linear polarization
e p. is the peak circular polarization

e O = O(1 + 3.135e77®/™), with s the skew factor
(taken to be unity as described by [6]).

At this point we solve the system 20 as follows:

e we sample ¢; from a uniform angular distribution (i; =

27€)

e we sample © from the scattering matrix R as follows:

cos(©) = 1-i-.q2—[(1—922)g/(1—.tJ-i-2gE)]2

e we calculate i5 and the new scattering angles 6 and ¢
(see [2] for the details)

e we then compute the new Stokes’ parameters S, in this
way we can keep track of the polarization state of the
photon along its path.

Having the new angles 6 and ¢ we can scatter the photon
and we step forward to the next interaction.

3.3.2 Validation

Again as we did for the isotropic scattering we need to val-
idate the model. The Chandrasekhar analytical solution
however refers only to the isotropic case. Hence we set the
scattering asymmetry parameter g to O in order to simulate
isotropic scattering. We then plot the relation between the



normalize intensity [ and the exiting 6 angle of the pho-
tons. The results are shown in Figure 16: the solid line is
the Chandrasekhar analytical solution while the points are
our Monte Carlo code.
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Figure 16. Total intensity 7 for a plane slab with Tonqa, =
10 against the exiting 6 angle

Finally we again plot the moments J, H and K using the
anisotropic scattering algorithm (Figure 17).
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Figure 17. Intensity moments using anisotropic scatter-
ing for the ultraviolet band and density p = 0.01 but with
g = 0 (see table at 3.3.3)

3.3.3 Results and measurements

The properties of interstellar dust (total opacity, albedo,
scattering asymmetry parameter and peak linear polariza-
tion) are well known and they are available in literature for
many radiation bands. Those values, together with the de-
scribed scattering technique permit us to do very interesting
experiments. We simulate a parallel slab with depth 5.0 as-
suming also constant density of 0.001 and changing the total
opacity « according to the following table.

Band A\(um) K a g DI
U(0.34) 360 | 0.54 | 0.48 | 0.26
B(0.44) 286 | 0.54 | 0.48 | 0.31
V(0.55) 219 | 0.54 | 044 | 043
R(0.73) 156 | 0.53 | 0.37 | 0.58
1(0.85) 105 | 0.49 | 0.29 | 0.70
J(1.25) 65 | 043 | 0.16 | 0.75
H(1.65) 38 | 0.33 | 0.06 | 0.87
K(2.20) 20 | 0.21 | 0.02 | 0.93

The results in Figures 18 and 19 show how the same stel-
lar system, simulated with 100M photons, appears if seen
either through the ultraviolet band U or through the infrared
band K (see 3.3.3).
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Figure 18. Intensity for the ultraviolet band U
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Figure 19. Intensity for the infrared band K

Although the ultraviolet band has a higher total opac-
ity, the albedo is more than a half of the albedo of the in-



frared band. Moreover the scattering in the infrared is al-
most isotropic while the asymmetry parameter for the ultra-
violet band is 24 times larger.

4 3-dimensional Cartesian grid
4.1 Basic concepts

In order to simulate a variety of dust clouds around a
point source it is necessary to discretize the space. In this
way, clouds of different densities and shape can be created,
where every cell contributes differently to the optical depth.
The space is discretized in each direction to xdim - ydim -
zdim grid cells and (zdim + 1) - (ydim + 1) - (zdim + 1)
cell faces where each cell has a defined opacity value p 4 .

Therefore, we can no longer approximate the no term to
a constant value as for the plane parallel slab. Each time we
generate or we scatter a photon we must instead compute
the integral of the opacity along its path until the edges of
our grid as explained by 9. We will use such value to sample
the new L as in 14. With such grid we can just decide which
kind of configuration of interacting medium we want and
simulate its distortion effect on a light source.

4.2 Integration

The integration technique used to calculate the randomly
sampled optical depth of each run 7 traces the course of the
photon through the grid. For each cell face that the photon
crosses (in X, y or z direction) the corresponding contribu-
tion of this cell to the total 7 traveled is computed. This
means that the contribution of the cell crossed to the total 7
of the particular run is the actual distance traveled through
the cell multiplied by the cell’s density.

The distance to the next cell faces along the propagation
unit vector (1, ny,n.) is calculated using:

xface — x yface —y
Sg = s Sy = y Sz
Ny Ny n,

_ zface —z

(25)
It is reasonable that the photon will hit the minimum of
these distances first. The integration process is over when
Trun + Teell > T. When this happens, the photon scatters
into the cell at a distance
(T - T’r‘un)

§=—"= (26)
Pcell

4.3 Results and experiments

For all our experiments we were using a grid which dis-
cretizes a cubic continuous space of 1.0x1.0x1.0. The first
experiment we conducted is the simulation of a uniform and

homogeneous cube of dust of dimensions 10x10x10 grid
points placed in front of the source at position —7z72x100
as shown in Figure 20 (using 200x200x200 grid points).
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Figure 20. Intensity for a cube of dust placed in front of
the source with 200x200x200 grid points

The asymmetrical position of the cube permits to notice
clearly the boundary effects. Our interpretation of this phe-
nomenon is that in the side faces of the cube the density of
each projected point is a contribution of many points in the
surface of the cube (due to the perspective projection).

Another interesting experiment we performed consisted
of simulating the case where we have a star in the middle of
an oblate spheroid described by:

y2
P+ =+ =r (27)
c

with the opacity that goes with the distance from the center:
K=e /T (28)

and with ¢ = 5. The total opacity « is depicted in Figure
21.
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Figure 21. Opacity distribution of an oblate spheroid of
dust with a point source in the center

The results we obtained are shown in Figure 22.
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Figure 22. Intensity of a spheroid dusty cloud using
2M photons, a=1.0 and density distribution of Figure ??
(500x500x500 grid points)

As it can be seen, still we notice the boundaries of the
structure. It is anyway interesting to study the influence of
the distribution of density in the final image. Also further
comparisons against real images would be very interesting
as additional validation of the code.

Concluding, the Cartesian grid offers a simple and clean
method to simulate complex shapes of dusty material but at
the same time needs a huge amount of memory (we could
simulate up to 500x500x400 of grid points).
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5 Parallelization

One of the best options when parallelizing a Monte Carlo
simulation is the task farming approach, that is using a num-
ber of machines to draw different samples from the param-
eter space. This is possible as we assume that the sampling
events in the Markov chain created are themselves indepen-
dent of all the previous sampling events. Also, since in most
cases the complexity of the spatial domain does not exceed
the processing capabilities of the individual machines, com-
plex domain decomposition schemes would only add un-
needed overhead to the simulation.

In the case of the radiative transfer code, the indepen-
dence of the events in the Markov chain allows us to dis-
tribute the burden of the simulation to the available pro-
cessors by assigning a subset of the number of photons to
each processor. Then, the simulation domain is initialized
on each processor using the parameters broadcasted from
the root node. Since there is no spatial decomposition,
the simulation proceeds independently on each processor
with minimal communication overhead. There is then only
one global communication step at the end of the simula-
tion when we compute the global reduction of the individual
simulation results from all processes to the root process.

The code is written in C++, which makes it reasonably
portable and fast compared to other languages. The paral-
lelization is achieved using functions from the robust MPI
library, which is the standard choice for clustering compu-
tation. All of the results have been obtained using the OW
cluster of the University of Amsterdam for the less expen-
sive tasks and the DAS3 cluster for the 3D Cartesian grid
images (using between 4 and 8 processors).

5.1 Results

Given the high level of scalability of the radiation trans-
fer problem and therefore the small communication over-
head it introduces we expect a quasi-linear speedup. The
speed-up we obtained from the parallelization of our code
is shown on Figure 23. The results are very satisfactory, the
speedup is almost linear and permits to fully gain computa-
tional power from a cluster of machines as we did in almost
all the discussed experiments.



Figure 23. Parallelization speed-up (OW cluster at UvA)
for 10M photons

6 Conclusion

The radiation transfer problem is a crucial issue when
modeling many astrophysical systems and Monte Carlo
methods are particularity suitable for this kind of problem.
In this paper we have investigated how we can use Monte
Carlo techniques in order to simulate dust radiative transfer.
We gave a brief theoretical background and we studied and
implemented the different scattering techniques. We dis-
cussed a flexible solution using a Cartesian grid for model-
ing inhomogeneous media and we finally presented a dis-
tributed version of our code. Moreover our implementation
can be easily extended to electron scattering modeling (with
a different scattering matrix R), permitting to simulate a gas
medium. Nevertheless, further work is necessary in order to
simulate real astrophysical systems such nebulae or accre-
tion discs that we find in active galactic nuclei or binary sys-
tems. In conclusion we have shown how to produce quite
accurate simulations of radiative transfer for simple stellar
systems and we performed many experiments and measure-
ments on our results.
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